If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2k^2+23k-20=0
a = -2; b = 23; c = -20;
Δ = b2-4ac
Δ = 232-4·(-2)·(-20)
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-3\sqrt{41}}{2*-2}=\frac{-23-3\sqrt{41}}{-4} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+3\sqrt{41}}{2*-2}=\frac{-23+3\sqrt{41}}{-4} $
| 0.05n+0.25(16-n)=2 | | x^2+.5x-5=0 | | 14(x+2)=7(2x-3) | | (x=2)(x+12)=(x+16)12 | | -90-x=-43 | | 18x2+9x=0 | | (x)/(5)-(2x)/(3)=(9)/(7)-x | | (x)/(3)+1=5 | | x-25=67 | | (20)(39)=(x+8)(2x-6) | | 3^4x-1=156 | | -59+x=-35 | | (3x-8)/5-(x-1)/4+(7-x)/3=(4-X)/3-(8x-5)/10 | | x+-42=-53 | | 3x-5-2=27 | | (6x-8)=(5x+10) | | -99+x=-149 | | 0.03^x=2.4 | | (3x-1)(3)=4(x+5) | | 24000=24000-300t | | 20=x2x-4 | | 3x-10=50° | | 15=8u-6u | | 15+0.5x=3x | | (3x+9)=(x+9) | | 3g+2(g+2)=2+2*2+2-2g | | 9h-21-21=24 | | -7=w/2-3 | | 4x(7)=10 | | x^-35x+196=0 | | 8x+3+4x+3+90=180 | | P(x)=4x^-1 |